Networking sessions in Red Hat Summit 2016

I recently attended the Red Hat Summit 2016 event that took place at San Francisco, CA, on June 27-30. Red Hat Summit is a great place to interact with customers, partners, and product leads, and learn about Red Hat and the company’s direction.

While Red Hat is still mostly known for its Enterprise Linux (RHEL) business, it also offers products and solutions in the cloud computing, virtualization, middleware, storage, and systems management spaces. And networking is really a key piece in all of these.

In this short post I wanted to highlight a few sessions which are relevant to networking and were presented during the event. While video recordings are not available, slide decks can be downloaded in a PDF format (links included below).

  • Software-defined networking (SDN) fundamentals for NFV, OpenStack, and containers
    • Session overview: With software-defined networking (SDN) gaining traction, administrators are faced with technologies that they need to integrate into their infrastructure. Red Hat Enterprise Linux offers a robust foundation for SDN implementations that are based on an open source standard technologies and designed for deploying containers, OpenStack, and network function virtualization (NFV). We’ll dissect the technology stack involved in SDN and introduce the latest Red Hat Enterprise Linux options designed to address the packet processing requirements of virtual network functions (VNFs), such as Open vSwitch (OVS), single root I/O virtualization (SR-IOV), PCI Passthrough, and DPDK accelerated OVS.
    • Slides

————————————————————————-

  • Use Linux on your whole rack with RDO and open networking
    • Session overview: OpenStack networking is never easy–each new release presents new challenges that are hard to keep up with. Come see how open networking using Linux can help simplify and standardize your RDO deployment. We will demonstrate spine/leaf topology basics, Layer-2 and Layer-3 trade-offs, and building your deployment in a virtual staging environment–all in Linux. Let us demystify your network.
    • Slides

————————————————————————-

  • Extending full stack automation to the physical network
    • Session overview: In this session, we’ll talk about the unique operational challenges facing organizations considering how to encompass the physical network infrastructure when implementing agile practices. We’ll focus on the technical and cultural challenges facing this transition, including how Ansible is uniquely architected to serve as the right foundational framework for powering this change. We’ll touch on why it’s more important than ever that organizations embrace the introduction of new automated orchestration capabilities and start moving away from traditional command and control network device administration being done hop by hop. You’ll see some some of the theories in action and touch on expanding configuration automation to include elements of state validation of configuration changes. Finally, we’ll touch on the changing role of network engineering and operations teams and why their expertise is needed now more than ever to lead this transition.
    • Slides

————————————————————————-

————————————————————————-

  • Telco breakout: Reliability, availability, and serviceability at cloud scale
    • Session overview: Many operators are faced with fierce market competition that is attracting their customers with personalized alternatives. Technologies, like SDN, NFV, and 5G, hold the key to adapting to the networks of the future. However, operators are also looking to ensure that they can continue to offer the service-level guarantees their customers expect.With the advent of cloud-based service infrastructures, building secure, fault-tolerant, and reliable networks that deliver five nines (99.999%) service availability in the same way they have done for years has become untenable. The goal of zero downtime is still the same, as every hour of it is costly to service providers and their customers. As we continually move to new levels of scale, service providers and their customers expect that infrastructure failures will occur and are pro-actively changing their development and operational strategies. This session will explore these industry challenges and how service providers are applying new technologies and approaches to achieve reliability, availability, and serviceability at cloud scale. Service providers and vendors will join us to share their views on this complex topic and explain how they are applying and balancing the use of open source innovations, resilient service and application software, automation, DevOps, service assurance, and analytics to add value for their customers and business partners.
    • Slides

————————————————————————-

  • Red Hat Enterprise Linux roadmap
    • Session overview: Red Hat Enterprise Linux is the premier Linux distribution, known for reliability, security, and performance. Red Hat Enterprise Linux is also the underpinning of Red Hat’s efforts in containers, virtualization, Internet of Things (IoT), network function virtualization (NFV), Red Hat Enterprise Linux OpenStack Platform, and more. Learn what’s new and emerging in this powerful operating system, and how new function and capability can help in your environment.
    • Slides

————————————————————————-

  • Repeatable, reliable OpenStack deployments: Pipe dream or reality?
    • Session overview: Deploying OpenStack is an involved, complicated, and error-prone process, especially when deploying a physical Highly Available (HA) cluster with other software and hardware components, like Ceph. Difficulties include everything from hardware selection to the actual deployment process. Dell and Red Hat have partnered together to produce a solution based on Red Hat Enterprise Linux OSP Director that streamlines the entire process of setting up an HA OpenStack cluster. This solution includes a jointly developed reference architecture that includes hardware, simplified Director installation and configuration, Ceph storage backed by multiple back ends including Dell SC and PS series storage arrays, and other enterprise features–such as VM instance HA and networking segregation flexibility. In this session, you’ll learn how this solution drastically simplifies standing up an OpenStack cloud.
    • Slides

————————————————————————-

  • Running a policy-based cloud with Cisco Application Centric Infrastructure, Red Hat OpenStack, and Project Contiv
    • Session overview:  Infrastructure managers are constantly asked to push the envelope in how they deliver cloud environments. In addition to speed, scale, and flexibility, they are increasingly focused on both security and operational management and visibility as adoption increases within their organizations. This presentation will look at ways Cisco and Red Hat are partnering together to deliver policy-based cloud solutions to address these growing challenges. We will discuss how we are collaborating in the open source community and building products to based on this collaboration. It will cover topics including:
      • Group-Based Policy for OpenStack
      • Cisco Application Centric Infrastructure (ACI) with Red Hat OpenStack
      • Project Contiv and its integration with Cisco ACI
    • Slides

 

 

NFV and Open Networking with RHEL OpenStack Platfrom

(This is a summary version of a talk I gave at Intel Israel Telecom and NFV event on December 2nd, 2015. Slides are available here)

I was honored to be invited to speak on a local Intel event about Red Hat and what we are doing in the NFV space. I only had 30 minutes, so I tried to provide a high level overview of our offering, covering some main points:

  • Upstream first approach and why we believe it is a fundamental piece in the NFV journey; this is not a marketing pitch but really how we deliver our entire product portfolio
  • NFV and OpenStack; I touched on the fact that many service providers are asking for OpenStack-based solutions, and that OpenStack is the de-facto choice for VIM. That said, there are some limitations today (both cultural and technical) with OpenStack and clearly we have a way to go to make it a better engine for the telco needs
  • Full open source approach to NFV; it’s not just OpenStack but also other key projects such as QEMU/KVM, Open vSwitch, DPDK, libvirt, and the underlying Linux operating system. It’s hard to coordinate across these different communities, but this is what we are trying to do, with active participants on all of those
  • Red Hat product focus and alignment with OPNFV
  • Main use-cases we see in the market (atomic VNFs, vCPE, vEPC) with a design example of vPGW using SR-IOV
  • What telco and NFV specific features were introduced in RHEL OpenStack Platform 7 (Kilo) and what is planned for OpenStack Platform 8 (Liberty); as a VIM provider we want to offer our customers and the Network Equipment Providers (NEPs) maximum flexibility for packet processing options with PCI Passthrough, SR-IOV, Open vSwitch and DPDK-accelerated Open vSwitch based solutions.

Thanks to Intel Israel for a very interesting and well-organized event!

 

Red Hat Enterprise Linux OpenStack Platform 6: SR-IOV Networking – Part II: Walking Through the Implementation

Second part of the SR-IOV networking post I wrote for the Red Hat Stack blog.

Red Hat Stack

In the previous blog post in this series we looked at what single root I/O virtualization (SR-IOV) networking is all about and we discussed why it is an important addition to Red Hat Enterprise Linux OpenStack Platform. In this second post we would like to provide a more detailed overview of the implementation, some thoughts on the current limitations, as well as what enhancements are being worked on in the OpenStack community.

Note: this post does not intend to provide a full end to end configuration guide. Customers with an active subscription are welcome to visit the official article covering SR-IOV Networking in Red Hat Enterprise Linux OpenStack Platform 6 for a complete procedure.

Setting up the Environment

In our small test environment we used two physical nodes: one serves as a Compute node for hosting virtual machine (VM) instances, and the other serves as both the OpenStack Controller and…

View original post 2,177 more words

Red Hat Enterprise Linux OpenStack Platform 6: SR-IOV Networking – Part I: Understanding the Basics

Check out this blog post I wrote for Red Hat Stack on SR-IOV networking support introduced in RHEL OpenStack Platfrom 6. This is based on the Nova and Neutron work done at the upstream community for the OpenStack Juno release.

Red Hat Stack

Red Hat Enterprise Linux OpenStack Platform 6: SR-IOV Networking – Part I: Understanding the Basics

Red Hat Enterprise Linux OpenStack Platform 6 introduces support for single root I/O virtualization (SR-IOV) networking. This is done through a new SR-IOV mechanism driver for the OpenStack Networking (Neutron) Modular Layer 2 (ML2) plugin, as well as necessary enhancements for PCI support in the Compute service (Nova).

In this blog post I would like to provide an overview of SR-IOV, and highlight why SR-IOV networking is an important addition to RHEL OpenStack Platform 6. We will also follow up with a second blog post going into the configuration details, describing the current implementation, and discussing some of the current known limitations and expected enhancements going forward.

PCI Passthrough: The Basics

PCI Passthrough allows direct assignment of a PCI device into a guest operating system (OS). One prerequisite for doing this is that the hypervisor…

View original post 866 more words